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FINAL REPORT 

MOVING NONLOCAL CRACK:   ANTI-PLANE SHEAR CASE 

.+ 
N. An and A.C. Enngen 

Princeton University- 
Princeton, NJ 08544 

ABSTRACT: Stress distribution near the tip of a constant velocity 

crack is determined by means of the nonlocal theory of 

elasticityo The stress at the crack tip is finite and 

it increases with increasing crack velocity. 

I.     INTRODUCTION 

The present work is concerned with the investigation of the 

stress distribution near the tip of a uniformly moving crack in a brittle 

elastic solid.  To this end, we employ the recently developed theory of 

nonlocal elasticity [1] which incorporates important features of atomic 

lattice dynamics relevant to the study of microscopic defects, as well as 

macroscopic phenomena that fall within the domain of classical elasticity 

in the long wave-length limit. 
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In a series of papers, Eringen and his coworkers [2-6] treated 

various problems on crack tip stresses, dislocations and dispersive wave 

propagation by means of the linear theory of nonlocal elasticity. We 

mention here briefly, the following few basic results in support of the 

power and the potential of nonlocal theory:  In contrast to the predictions 

made in classical elasticity: 

(i) Plane waves are dispersive and the dispersion curves 

approximate those of the atomic lattice dynamics and 

the phonon-dispersion experiments within a 6% error 

margin in the entire Brillouin zone [1-3]. 

(ii)  The hoop stress is finite and acquires a maximum near 

the crack tip. Consequently, physically meaningful 

maximum stress hypothesis may be used at all levels as 

a fracture criterion [4-8]. 

(iii) Theoretical strength of solids estimated by means of 

nonlocal theory is in excellent agreement with the pre- 

dictions based on atomic theory [9,10], 

In dynamic problems of crack propagation, classical theory also 

predicts infinite stresses at the crack tip. Moreover, the critical 

1/2 
dynamic stress intensity factors  (i.e.  K = r  (t  , t ) as r->-0 and 

6 = 0)  turn out to be independent of the crack velocity, identical to 

their static values [11,12]. 

The problem of a constant velocity crack offers a convenient 

testing ground for the extension of the treatment of nonlocal crack problems 

to dynamic cases. Here, we study the motion of a finite length crack for 

the anti-plane shear case (Mode III). This problem represents an oversimpli- 

fied picture of the dynamic fracture. Nevertheless, it does offer us an 



insight on the nature of the nonlocal stress field near the tip of a 

moving crack.  It is found that the nonlocal shear stress at the crack tip 

is finite and it increases with increasing crack velocity. These charac- 

teristics of nonlocal stress behavior enables us to extend the maximum 

stress hypothesis to the dynamic cases. 

In Section 2, we summarize basic equations of nonlocal elasticity. 

In Section 3, an analytical (approximate) solution is obtained for the 

dual integral equations ensuing from the mixed boundary value problem. The 

nonlocal stress field is given in Section 4,  and compared with the local 

and the static stresses. 

II.    NONLOCAL ELASTICITY 

For linear homogeneous and isotropic elastic solids, the two 

dimensional stress constitutive equations are given by [1]: 

hi a(|x'-x|,e) Oj^^(x') ds(x') (2.1) 

where S is the two-dimensional plane region and a, „(x',t) is the local 

(classical) stress tensor at x' which depends only on the local strain 

tensor e, j,(x' t) at the point x' , where 

'U    -    ^ \T \l '  2P e^s. (2.2) 

1 
\i 2   t\,£ " "£,k) (2.3) 



Here u, is the displacement vector, X  and y are the Lame constants, and an 

index following a conuna represents a gradient, e.g. 

The nonlocal kernel a(|x'-x|,e) characterizes the range and the strength 

of interatomic interactions.  e is the nonlocality parameter.  It corre- 

sponds to an internal characteristic length of the material, hence reflects 

the microstructure and discreteness of the body. The nonlocal kernels may be 

determined by requiring that the wave dispersion equations derived from the 

nonlocal equations approximate the corresponding dispersion relations which 

are derived by means of lattice dynamics or obtained experimentally.  In 

addition, they must fulfill certain consistency conditions so that in the 

case c -> 0 (the continuum limit), the nonlocal equations revert to the 

classical, local equations, i.e. 

..   , * 
(i)  lim a(|x'-x|,e) = 6(x'-x) 

(ii)  f  a(|x'-x|) dS(x') =1 (2.4) 

(iii) a vanishes as  | x'-x| -»■ "^ 

In [5], we introduced a two-dimensional kernel which satisfies the 

consistency conditions and also yields dispersion curves closely approxi- 

mating those of a two-dimensional perfect square lattice. (For other possi- 

bilities, see [3,9] } 

a(|x'-x|,c) = (2TT e^)"^ KQ(E"^[(X'-X)^ +(y'-y)^]^   ^^°^^ 

We note that the homogeneous kernel    a(|x'-x|)    used here violates the 
inhomogeneity that  exists in an atomically thin layer near the crack boundary. 



(2.5)  has the additional  convenient property that 

(1 - e^V^)a    =    6(lx'-xl) (2.6) 

For perfect crystals, the dispersion curve can be matched exactly at 

the ends of the Brillouin zone, leading to the determination of e : 

e =  (0.22 - 0.31) a (2.7) 

where    a    is the atomic lattice parameter. 

In the sequel,  we will use  (2.5)   as the nonlocal kernel  and    e    as 

given by  (2.7)   so that there will be no parameter adjustments  for the spe- 

cific problem treated here. 

Cauchy's  equations  for the linear momentum remains valid; 

■    : \£,k     =    P^£ (2.8) 

where p is the mass density and a superposed dot denotes the material time 

derivative. 

Upon applying the operator (2.6) to (2.1) and using (2.3) and (2,4), 

we obtain the following singularly perturbed partial differential equations: 

a -eV) pU^ =  (^-^3u^^,, - yu^^^,        (2.9) 

In Section 3, we obtain the solution of Eqs. (2.9) and (2.1) for the 

nonlocal moving shear crack problem„ 



III.     ANTI-PLANE MOVING CRACK 

A line crack of length    2i    is  asstimed to propagate with a constant 

velocity    V ,     in an elastic plate in the   X    = O-plane.       The imiform motion 

of the crack is maintained by an anti-plane shear stress    T„     (Fig.   1).     In 

the moving coordinate system 

X    =    X  - Vt y =Y (3.1) 

we have 

Uj^ = 0 ,      "2 = 0 , u^ = w(x,y)   = w(-x,y) 

8w 8w 
xz 9x yz dy 

and the field equations   (2«9)   reduce to 

(3.2) 

(3.2) 

2 2 2 2 2 

(V/c^)     [1-E  (—2^-T^3~T   =    (—y ■" -T) " (3o3) 
3x^       dy        3x 9x        dy 

where    C2 = (y/P)     denotes the phase velocity of shear waves. 

We note that the nonlocal  field equations revert to the local equations 

for   e = 0    and to the static equations  for    V = 0. 

By utilizing the Fourier transform in the x-direction 

CO 

f 

f(k,y)     =     (271)^ f(x,y)   exp(ikx)   dk (3.4) 

we obtain the general  solution of  (3.3)   for      y > 0    as 



w(k,y)    =    (f)^ A(k)   exp(-k YCEk)y - ikx)dk (3.5) 

where 

2 ,  2     „2       2„2, 2, ,,  2       2,2,2, 
Y      =     (c-V-eVk)/(c-eVk) (3„6) 

and the inversion contour is  chosen in such a way that 

]R Y 1 0 

The boundary conditions for the moving crack problem in the new 

coordinate system are equivalent to the static case« Here we follow [5] 

in determining the self-consistent nonlocal boundary conditions„  For the 

uniform shear load TQ , they are given by 

w(x,0) = U |x| > i 

\   ^yz^^^'^^ = " "^0 '       lx| < il . (3.7) 

w(x,y) = 0 2   2 
as  (x + y ) ->■ 

Insertion of (3„5) into (3o2) and (3„7) yields a set of dual integral 

equations 

K D(K) yicK)   cos K^  dK  =  1  ;     Id <1 

D(K) cos K^ dK = 0 ;      Ul > 1 

(3.8) 

where 

The use of a different set of boundary conditions are explored in other 
work  (e.g. [10]). 



? = x/£ ,    K = k£    6 = e/£ 

(3.9) 

The standard Ansatz 

D(K) t^'^^ h(t) JpCKt) dt 

0 

leads to a single Fredholm equation 

C3.10) 

h(t)   + K(t,n) h(n) dn = t^^^ ;        o<t<i (3.11) 

where 

KCt.n)    =    (tn) 1/2 K[Q(K)   -   1)]   J^CKt)   jQ(<n)   dK (3.12) 

Q(K)    = [ic^ -<^)/id^-<h]^^^       ;     K^(c,d) 

i  [(K^-c^)/(d^-ic^)]^/^      ;      ice(c,d) 

V^V, 2     ,2     ,,.2 
c   = d   - 1/5 (3.13) 

The kernel    K(t,ri)     can be expressed in a more compact fomi by reducing  (3= 13) 

to an integral around the branch cuts by contour integration  (see also   [9], 

p.  286),  i.e. 

r'^ /H^^^(Kt)   J   (Kn) 
1/2 *    " ^ 

K(t,n)   =   (tn)- <Q(<) 
H^^^(Kn)   Jo(Kt)) 

;     t >'! 

dK f3»lS) 
;   t<n 

where    H -^       denote Hankel  functions. 
V 



In order to derive (3.14), we first evaluate the auxiliary integrals 

(t > ^j 

k I. = (tn)'^ z[G(z) -1] Hg^^^zt) jQCznJdz ;   j = l,2 (3.15) 

G. 

G(z) 
Q(z)    ;  zeC, 

Q(z)    ; zee. 

where a bar denotes the complex conjugate and    z=p + iq    is a point in the 

complex plane.     The contours    C,     and    C^    are shown in Fig„   2„     There  are no 

singularities within these contours       (I, =0,l2 = 0)       and contributions  from 

the circular arcs vanish,   due to the asymptotic behavior of the integrands 

on each    C »     As the next  step, we recall that 

,(1) ,(2) H^^^(z)   + H^  ^(z)     =    2 

G(z)     =    G(-z) 

i Yo(z) 

(3ol6) 

Hj^^(iqt)   JpCiqTl)     =     - Hj^^(-iqt)   Jo(-iqTl) 

and we obtain 

^1  ^  \ K(t,ri)   -   (tn) 

- (tn) 

1/2 
Q(ic)  jQ(ict)  jQ(KTi)dK 

c    d 
1/2       ^ 

(3.171 

Q(i<)   i YQ(Kt)  jQ(icri)dK    =    0 

(3.14)   follows  easily from  (3ol7)o     For   n > t ,     we merely  exchange  the  roles 

of    ri    and    t    and recover  (3.14). 
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The new form of    K(t,ri)     activates us for the trial solution 

h(t)     =    t^/^[B + 
f 

p(s)    JQ(st)ds] 

Substituting  C3ol8)  into  (3.11), we obtain 

(3.18) 

AB t^/^ . t^/2 
f 

B(s)  p(s)   jQ(st)  + Bt 1/2 Q(K)   HJ^^(K)     Jp(Kt)dK 

+   t 1/2 

A    =     1  - - 

dK   K   Q(K)    JQ(Kt) 

/■d    o     9 

/K  -c  \l/2  dK 

p(s)  G(<,s)dK    =    t^/^ (3.19) 

2 
I    =     (1  - ^)^/2    ^    ^^ ^3^20) 

^2 

B(s)     =    1  - ^ 
2>^ 

/K   -C   \ KdK 
I ,2     2/1     ^ 
\d   -K   'K   -S 

0 ; c< s < d (3.21) 

G(K,s)     =     [K HJ^^(K)  JQ(S)   - s j^(s)  H^^^(K)]/(K^-s^) (3.22) 

We set    AB=1    and    p(d) =0    as an integrability condition and utilize the 

asymptotic expansions of the Bessel function to reduce  (3.19)  into a simpler 

form for an approximate solution: 
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.1/2 
3(:;^3^^^ expCi   (< - 37T/4)) Q (K) j.(fct)  die 

'0' 

.1/2 

d        d 
r       r 

i   exp(i   (K-S)) ,   ^    ,   T .   ^        r     ■. ■, 
 t^Yz? ^-^PCs)   ds]KQ(K)   J„(Kt)d< 

TT  (KS)^        (K-s) " 

+   t 
1/2 

c        c 

d 
f 

R(K)   Q(K)       JQ(Kt)dK      =      0 (3.23) 

where     R(K)     is  given by 

R(K) [G(K,s)  . ' exp(i(K-s))   j p^^3   ^^ 

7T((<S) (<-S) 

+ S[H^(K)-   (:j|)l/2 exp(i(K  -3TT/n))]   (3,24) 

By ignoring the last term in   (3.23),  we obtain an airfoil equation 

d 

1 

IT 
p(s)   exp(- is)   s~^^^ ^^    ^ B(2/^)^^^ exp(-  i3^/4) ^^ 

25) 
K-s 

The solution of (3.25) with the side condition p(d) =0 is (Tricomi [14], 

p. 178) 

p(s) = - i 3 (^)'/' (:^)^/2 exp(i(s - 37r/4)) (flf)!/^ (3.26) 

Substitution of (3.26)   into the third term in   (3.24)  yields 
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R(K) Q(K) JpCKt) = rCt) = o(e^/^) (3,27) 

Hence, p(s) constitutes a very good approximate solution for (3.11) to the 

1/2  * 
order of  (6  ) „ 

In the next section, we utilize the approximation provided by (3.18) 

and calculate the nonlocal crack tip stresses. 

IV.     STRESS FIELD 

The nonlocal stress field can be calculated by substituting (3.18) 

into (3.10) and (2.1). Below, for comparison purposes, we also give the 

crack tip stresses for the local and the static cases. The stresses along 

the crack line near the crack tip  (y = 0 , E, > I),     are given by: 

1o The Static Case:      v = 0 

The local and nonlocal field equations coincide.  For both cases, 

the solution is given by 

D(K) = J^(K)/K (4.1) 

(i)  Local:  6=0 

t /T. 
yz 0 J, (K) cos K^ dK = I^(K) e"'^^ dK 

(^-1)-^/^ [?MS^-1)^/^]-^   ^>1     (4.2) 

The approximate solution (5.26) is not as good when V becomes ver\' close 
to c^  (i.e.  c -H)) , since then the asymptotic expansions of the Bessel 
functions in (3.23) are no longer valid. 
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The second integral in (4.2) is obtained by contour integration (i.e., 

J^(K) e ^ on CJ and JJ(K) e  ^ on C2 (see Fig. 2)). The local 

stress is unbounded at the crack tip, ^ = 1. 

(ii) Nonlocal: 6^0        .     . 

t /T_ 
yz 0 (1 + 6V)"*[(1 +6^K^)^^' + 6K]"^ J^(K) COSKC dK  (4.3) 

I^(K) e"*^^ dK + [1 -6K/(6 K^-1)^] I^(K) e"^^ dK 

(4»4) 

= [2(5-1)]" 

~k 

[2/(C+i)]^ [K  + (C^-l)^]"^ - 1 

e'^        k 
+ -2- X  [K3/4(X) Ii/4(X) + Kj/4(X) l3/4(x) ] + 0(1) 

X =  (C-l)/26 (4.5) 

From (4,5) and from the small argument behavior of the Bessel functions, 

we observe that the crack tip stress is finite 

NS ^ i- i- 
ty2(l,0)/TQ = /2(r(3/4)/r(l/4))6' = 0.475 6"' (4.6) 

The difference between (4„3) and (4.2) lies in the terms which include 

the nonlocality parameter  6 = e/£ .   They act as a converging factor in 

(4.3) and the nonlocal stress is boundedo Equation (4,4) is obtained by 

contour integration methods, using the contours C  and C-,  (Fig„ 2), 

Here we see how the nonlocality acts as a natural cut-off in the Fourier 

domain and thus bringing in the discreteness effects of a nonlocal body., 
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2o The Dynamia Case:    \ i- 0 

(i)  Local;  6=0 

The solution for D(<) is different from the static case 

D(<) 
J^(K) 
^    (1 - \)"^/^ = Jj(K)/(S2K) (4.7) 

Nevertheless, the local stress is equal to its static value and it is 

unbounded 

t /T^ 
yz 0 

f 
S2KD(K) COSK^ dx =     J.^(K) COSK^ dK      (4o8) 

(ii) Nonlocal: 6^0 

(1+6 K-y  [(1+6^K^)^ + 6K Q(<)]"'^ KQ(K)D(K) COSK^ dK 

B(K) IJ(K) e""^^ dK 

(1-6K[(C2^-V2 . 6VK2)/( 2 _ 5VK2)(62K2 .I)J%) B(K) I, We"^^ dK 

c-l 
+ 0(1) ; 

where 

B(K) \  (1 -V^/c^)-!/^ "d+iK % ^ .d-JK f 
^c+iK-^   ^c-iK-^ 
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In Fig. 3, the numerical evaluation of (4.9) are plotted along with the 

local anti-plane shear stress.  In contrast to the local stress, the non- 

local stress is increasing with the increasing crack velocity. 

In this work, we have focused on how the nonlocality affects the 

stress distribution„  In an upcoming publication, we will discuss the im- 

plications of the velocity dependence of the nonlocal crack tip stresses 

for brittle crack propagationo The extension of the maximum stress 

hypothesis to the dynamic case and the determination of a terminal velocity 

will be discussed in the context of a constant velocity crack in in-plane 

extension mode, which provides a more realistic picture of dynamic rupture 

phenomena. 



FIGURE   I 

MOVING ANTI-PLANE CRACK 



FIGURE 2 
CONTOURS IN  THE COMPLEX PLANE 



tyz(l,0;0) 

NONLOCAL (4.9) 

LOCAL 

0.i 0.5 .0 
■^ 

V/C: 

FIGURE 3 
THE  NONLOCAL STRESS 
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